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Abstract
The case of the gyrostat motion found by A G Reyman and M A Semenov-
Tian-Shansky is known as the Liouville integrable Hamiltonian system with
three degrees of freedom without symmetry groups. We find the set of points at
which the integral map has rank 1. This set consists of special periodic motions
generating the singular points of bifurcation diagrams on iso-energetic surfaces.
For such motions, all phase variables are expressed as algebraic functions of
one auxiliary variable satisfying the differential equation integrable in elliptic
functions of time. It is shown that the corresponding points in three-dimensional
space of the integral constants belong to the intersection of two sheets of the
discriminant surface of the Lax curve.

PACS numbers: 45.20.Jj, 45.40.Cc
Mathematics Subject Classification: 70E17, 70G40

1. Introduction

The equations of motion of a gyrostat with a fixed point in two constant fields (say, gravitational
and magnetic) referred to the moving frame have the form

I
dω

dt
= (Iω + λ) × ω + r1 × α + r2 × β,

dα

dt
= α × ω,

dβ

dt
= β × ω.

(1)

Here ω is the angular velocity, α, β are fixed in space fields intensity vectors. Constant (with
respect to the body) vectors r1, r2 denote radius vectors of the centres of fields application, λ
stands for the gyrostatic momentum, I is the inertia tensor at the fixed point O. The restriction
of such a system to any non-degenerate common level of three geometrical integrals (Casimir
functions |α|2, |β|2, α · β) in R

9(ω, α, β) is Hamiltonian with three degrees of freedom.
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Let Oe1e2e3 be the orthonormal basis of the principal axes of inertia. Suppose that
the principal inertia moments satisfy the Kowalevski ratio 2:2:1, the gyrostatic momentum is
directed along the dynamic symmetry axis λ = λe3 (λ = const), and the vectors r1, r2 are
parallel to the equatorial plane Oe1e2. In the work [1] the complete Liouville integrability
of such system (1) has been proved. Despite this fact, for the case λ �= 0 the only explicit
integrations or qualitative investigations of (1) known up-to-date [2–4] deal with the axially
symmetric force (β ≡ 0). We suppose that

α × β �= 0, r1 × r2 �= 0.

The first condition implies that the geometrical integrals are independent and the corresponding
common level P 6 is diffeomorphic to SO(3) × R

3.
For each common level P 6 there exists a linear change of variables, which after a proper

choice of the moving frame gives r1 = e1, r2 = e2, α⊥β [5]. If in addition it happens that
|α| = |β|, we obtain the case of Yehia [6]; the system admits an S1-symmetry and therefore
is reducible to a family of systems with two degrees of freedom. In the following we deal
with the irreducible case |α| �= |β| �= 0. Thus, without loss of generality we consider the
geometrical integrals

|α|2 = a2, |β|2 = b2, α · β = 0 (2)

with arbitrary constants

a > b > 0. (3)

Choose the measurement units to obtain I = diag{2, 2, 1}. Then the three involutive first
integrals on the level (2) are

H = ω2
1 + ω2

2 +
1

2
ω2

3 − α1 − β2 − λ2

2
,

K = (
ω2

1 − ω2
2 + α1 − β2

)2
+ (2ω1ω2 + α2 + β1)

2

+ 2λ
[
(ω3 − λ)

(
ω2

1 + ω2
2

)
+ 2ω1α3 + 2ω2β3

]
,

G = 1

4

(
M2

α + M2
β

)
+

1

2
(ω3 − λ)Mγ − b2α1 − a2β2.

(4)

Here Mα = (Iω + λ) · α,Mβ = (Iω + λ) · β,Mγ = (Iω + λ) · (α × β).
The constant term (−λ2/2) in the energy integral is introduced for compatibility with the

work [1] and more detailed paper [7]. Note that the integral K for the Kowalevski gyrostat
in two constant fields was first found by Yehia [6], and the integral G generalizing the square
of the classical cyclic integral was found by Reyman and Semenov-Tian-Shansky in the work
[1] by means of the Lax representation for the system (1).

Introduce the integral map

J = H × K × G : P 6 → R
3. (5)

The inverse images J−1(h, k, g) for all (h, k, g) ∈ R
3 define the Liouville foliation of P 6. It is

likely that the system (1) is non-degenerate on P 6 as the Hamiltonian system with three degrees
of freedom. Then periodic trajectories on resonance tori, though filling a set of measure zero,
are dense in P 6. Nevertheless, such trajectories are of no interest from the point of view of
analytical integration or topological analysis of the system. The topological analysis, in the
case of two degrees of freedom, is based on the study of bifurcation diagrams of the integral
maps and corresponding transformations of two-dimensional Liouville tori [8]. In the aspect
of the Liouville equivalence, more analysis of the singular points (the so-called nodes) of these
diagrams is needed [9]. In our case consider the bifurcation diagram �(J ) ⊂ R

3 as a two-
dimensional cell complex. Then the singular points form the union of skeletons of dimensions
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0 and 1. The 0-skeleton is the image of the equilibria in the system; it is shown in [10] that
there exist exactly four equilibria on each P 6 satisfying (3) (see also [11] for related results).
The question of finding 1-cells of �(J ) is much more complicated. The corresponding values
of the first integrals are generated by periodic trajectories that are Liouville tori themselves,
i.e., closed orbits satisfying rank J = 1. Let us call such a trajectory a special periodic motion
(SPM). Another way to define an SPM is to say that it is a one-dimensional orbit of the Poisson
action on P 6 generated by the involutive set of the first integrals [9].

For the classical case of the Kowalevski top in the gravity field all SPMs are permanent
rotations around the vertical axis. For the Kowalevski top in two constant fields (λ = 0) the set
of SPMs, as shown in [12], consists of three families of pendulum motions pointed out in [5]
for an arbitrary rigid body and the families of critical periodic motions of the Bogoyavlensky
case [13]. These last motions were first described in [14] and explicitly integrated in [15]. It
is easy to check that in the case λ �= 0 only the following pendulum motions remain:

α = a(e1 cos ϕ − e2 sin ϕ), β = ±b(e1 sin ϕ + e2 cos ϕ),

α × β ≡ ±abe3, ω = ϕ̇e3, ϕ̈ = −(a ± b) sin ϕ.
(6)

Note that these motions were first found by Yehia [16] with no conditions imposed on the
moments of inertia but under some special restrictions for the centers of fields application.

The values of the first integrals (4) at solutions (6) satisfy the following:

k = (a ± b)2, g = ∓abh. (7)

The inequalities for h can easily be derived for any combination of signs. The admissible
values among (7) are obviously included in the 1-skeleton of the bifurcation diagram. In this
paper, in addition to solutions (6), we find all special periodic motions of the Kowalevski
gyrostat in two constant fields. We obtain the expressions for the corresponding points in
the image of the integral map filling the remaining part of the 1-skeleton of the bifurcation
diagram. We also prove that these points on the discriminant surface of the Lax algebraic
curve provide the pair-wise intersection of two-dimensional sheets.

2. Bifurcation surfaces

Introduce the change of variables (i2 = −1):

x1 = (α1 − β2) + i(α2 + β1), x2 = (α1 − β2) − i(α2 + β1),

y1 = (α1 + β2) + i(α2 − β1), y2 = (α1 + β2) − i(α2 − β1),

z1 = α3 + iβ3, z2 = α3 − iβ3,

w1 = ω1 + iω2, w2 = ω1 − iω2,

w3 = ω3.

(8)

Then from (1),

x ′
1 = z1w1 − x1w3, x ′

2 = x2w3 − z2w2,

y ′
1 = z2w1 − y1w3, y ′

2 = y2w3 − z1w2,

z′
1 = 1

2 (x1w2 − y2w1), z′
2 = 1

2 (y1w2 − x2w1),

w′
1 = − 1

2 [w1(w3 − λ) + z1], w′
2 = 1

2 [w2(w3 − λ) + z2],

w′
3 = 1

2 (y2 − y1).

(9)

3
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Here the stroke stands for d/d(it). The geometrical integrals (2) take the form

z2
1 + x1y2 = r2, z2

2 + x2y1 = r2, (10)

x1x2 + y1y2 + 2z1z2 = 2p2, (11)

where the positive constants p =
√

a2 + b2 and r = √
a2 − b2 are introduced according to the

conditions (3). Rewrite (4) as follows:

H = w1w2 + 1
2w2

3 − 1
2 (y1 + y2 + λ2),

K = (
w2

1 + x1
)(

w2
2 + x2

)
+ 2λ(w1w2w3 + z2w1 + z1w2) − 2λ2w1w2,

G = 1
4 (p2 − x1x2)w

2
3 + 1

2 (x2z1w1 + x1z2w2)w3 (12)

+ 1
4 (x2w1 + y1w2)(y2w1 + x1w2) − 1

4p2(y1 + y2) + 1
4 r2(x1 + x2)

+ 1
2λ(z1z2w3 + y2z2w1 + y1z1w2) + 1

4λ2(p2 − y1y2).

The Lax representation found in the work [1] in our notation has the form

L′ = LM − ML, (13)

where

L = 1

�

⎛
⎜⎜⎝

0 x2 0 z2

−x1 0 −z1 0
0 z2 0 −y1

−z1 0 y2 0

⎞
⎟⎟⎠ + 2

⎛
⎜⎜⎝

λ 0 −w2 0
0 −λ 0 w1

−w1 0 −w3 −2�

0 w2 2� w3

⎞
⎟⎟⎠ ,

M = 1

2

⎛
⎜⎜⎝

−w3 0 w2 0
0 w3 0 −w1

w1 0 w2 2�

0 −w2 −2� −w3

⎞
⎟⎟⎠ ,

� is the spectral parameter, the derivative in (13) is calculated in virtue of (9). The eigenvalue
equation det(L − ζE) = 0 defines the algebraic curve associated with this representation [7].
Put s = 2�2 and denote by h, k, g the arbitrary constants of the integrals (12). The equation
of the algebraic curve becomes


(s, ζ ) = ζ 4 − 4

s
[p2 − 2(h + λ2)s + 2s2]ζ 2 +

4

s2
[r4 + 4(2g − p2h − p2λ2)s

+ 4(k + 2λ2h + λ4)s2 − 8λ2s3] = 0. (14)

Suppose that (s, ζ ) is a singular point of this curve considered as a subset in C × C. It is
easily checked that in the case λ �= 0 the points with s = ∞ or ζ = ∞ are always regular for
the map 
. Then the singularity conditions have the form

∂


∂s
= 0,

∂


∂ζ
= 0. (15)

Elimination of ζ in (14), (15) leads to the parametric equations of two surfaces in R
3(h, k, g)

�1 :

⎧⎪⎨
⎪⎩

k = p2 + h2 − 4hs + 3s2 − p4 − r4

4s2

g = (h − s)s2 +
p4 − r4

4s
,

(s, h) ∈ R
2; (16)

�2 :

⎧⎪⎨
⎪⎩

k = −2λ2(h − 2s) − λ4 +
r4

4s2

g = 1

2
p2(h + λ2) − λ2s2 − r4

4s
,

(s, h) ∈ R
2. (17)

4
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Note that the curve (14) is reducible exactly at the values of h, k, g satisfying (7). Therefore
it is natural to expect that the bifurcation diagram of the map J belongs to the set defined by
equations (7), (16) and (17). The strict proof of this statement is based on the appropriate
description of the set of all critical points of (5); this set is organized into four-dimensional
manifolds (with singularities) bearing the induced Hamiltonian flows with two degrees of
freedom [17]. It is an interesting fact that due to the energy shift in (4) without any mechanical
interpretation, equations (16) of the surface �1 and equations (7) of the straight lines do not
contain the value of the gyrostatic momentum. In particular, equations (16) coincide with the
equations of the generalized 4th Appelrot class for the top [5, 18].

Restrict the map J to an arbitrary iso-energetic surface

Jh = J |Eh
, Eh = {ζ ∈ P 6 : H(ζ) = h}.

Then the bifurcation diagram �h of Jh satisfies the above equations of �(J ) with the fixed
chosen value h. Obviously, (7) defines two points in the (g, k)-plane. Equations (16) and (17)
define some plane curves. As a whole, these curves form the unbounded plane set. In contrast,
�h is bounded since any Eh is a compact set. To find the actual boundaries of the curves
segments included in �h we need to investigate the intersections �1 ∩ �2 corresponding to
the real solutions of (1), (2). The equations of transversal intersections considered on either
surface are of degree 5 in h and 12 in s. Even though they can be written down and numerically
solved, there is no criterion for the corresponding points to belong to the image of Jh. Finding
all special periodic motions gives an appropriate parameterization to the boundaries of the
bifurcation diagrams.

3. Analytical solutions

Let f be a smooth function of the complex variables (8). To find its critical points on the
submanifold given by (10), (11), it is convenient to use the following equations [5]

∂w1f = 0, ∂w2f = 0, ∂w3f = 0,(
2z2∂x2 + 2z1∂y2 − x1∂z1 − y1∂z2

)
f = 0,(

2z1∂x1 + 2z2∂y1 − x2∂z2 − y2∂z1

)
f = 0,(

x1∂x1 − x2∂x2 + y1∂y1 − y2∂y2

)
f = 0.

(18)

Indeed, six differential operators generating these equations are linearly independent and
eliminate the left parts of (10), (11).

It is known that in the case (3) all equilibria of (1) are non-degenerate critical points of
the Hamilton function H on P 6 [10]. This means that at these points rank J = 0. Hence,
rank J = 1 yields dH �= 0 and on periodic solutions both differentials dK and dG are
proportional to the differential dH ; all differentials are calculated on P 6. To formalize this
fact, introduce the functions with undefined Lagrange’s multipliers σ, τ

LK = K − 2σH, LG = 2G − (p2 − τ)H

and write equations (18) for f = LK and f = LG. For the function LK we obtain the
equations

(
w2

1 + x1
)
w2 + λ[z1 + w1(w3 − λ)] − σw1 = 0,

(w2
2 + x2)w1 + λ[z2 + w2(w3 − λ)] − σw2 = 0,

(19)

λw1w2 − σw3 = 0, (20)

5
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(
w2

1 + x1
)
z2 − λ(w2x1 + w1y1) + σz1 = 0,(

w2
2 + x2

)
z1 − λ(w1x2 + w2y2) + σz2 = 0,

(21)

x1w
2
2 − x2w

2
1 + σ(y1 − y2) = 0. (22)

For LG the similar system is

(τ − z1z2)w1 + x1y1w2 + x1z2w3 + y1z1λ = 0,

x2y2w1 + (τ − z1z2)w2 + x2z1w3 + y2z2λ = 0,

x2z1w1 + x1z2w2 + (τ − x1x2)w3 + z1z2λ = 0,

(x2z1 + y2z2)w
2
1 + (x1z2 + y1z1)w1w2 + (2z1z2 − x1x2)w1w3

− x1y1w2w3 − x1z2w
2
3 + (z1z2 − τ)z1 + x1y2z2 − λx1y1w2

+ λ(2z1z2 − y1y2)w1 − λ(x1z2 + y1z1)w3 − λ2y1z1 = 0,

(x1z2 + y1z1)w
2
2 + (x2z1 + y2z2)w1w2 + (2z1z2 − x1x2)w2w3

− x2y2w1w3 − x2z1w
2
3 + (z1z2 − τ)z2 + x2y1z1 − λx2y2w1

+ λ(2z1z2 − y1y2)w2 − λ(x2z1 + y2z2)w3 − λ2y2z2 = 0,

(τ − x1x2)(y1 − y2) + x2z
2
1 − x1z

2
2 + 2

(
x2y2w

2
1 − x1y1w

2
2

)
+ 2(x2z1w1 − x1z2w2)w3 + 2λ(y2z2w1 − y1z1w2) = 0.

(23)

It is shown below that at any critical point of LK the latter system is consistent automatically
for an appropriate value of τ .

First consider the case σ = 0. Then (19)–(22) describe the critical points of K.
Equations (19), (20) immediately yield

w1 = w2 = 0, z1 = z2 = 0.

These values satisfy (23) with τ = x1x2, meanwhile from (10), (11), x1x2 = (a ± b)2. In
particular, all critical points of K are also critical points of the function LG with τ = (a ± b)2.
Therefore the conditions dK = 0, dH �= 0 yield rank J = 1. In the initial variables, on the
corresponding trajectories we have ω1 = ω2 ≡ 0, α3 = β3 ≡ 0. Then the only solutions of
(1) are those defined by (6) with the integral constants given by (7). Recall that for λ = 0
the set {dK = 0} ⊂ P 6 contains the four-dimensional invariant manifold of the 1st Appelrot
class of critical motions in the gravity field (class K = 0) or, in the case of two fields, its
generalization found in the work [13] and studied in [14]. If λ �= 0 these solutions have no
analogue because the zero value of the integral K is no longer critical and the manifold defined
by dK = 0 in P 6 is only two-dimensional.

Now suppose that σ �= 0. Since the equilibria are already excluded, equation (20) yields
w1w2 �= 0. Denote then

w = w1w2, q = w1/
√

w, x = x1x2. (24)

Here w > 0, q ∈ C, |q| = 1, q = 1/q.
Equations (19), (21) provide the linear system in y1, y2, z1, z2, from which these variables

are found as the functions of x1, x2, w1, w2. Then (22) identically holds. Find w3 in terms
of w1, w2 from (20). After that four variables x1, x2, w1, w2 are subject to three equations
following from (10) and (11). As a result in generic case for each arbitrary value of σ we obtain

6
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a one-dimensional manifold invariant for equations (9), i.e., a periodic trajectory. Fulfilling
this procedure we obtain from (19)–(21)

w3 = λ

σ
w,

z1 = −
√

w

λσq
[σx1 + (λ2 + σ)q2(w − σ)],

z2 = −
√

w

λσq
[σq2x2 + (λ2 + σ)(w − σ)],

y1 = − (x1 + q2w)(q2x2 + w)

λ2q2
− w2

σ
+

σ(λ2 + σ)

λ2
− x1w

σq2
,

y2 = − (x1 + q2w)(q2x2 + w)

λ2q2
− w2

σ
+

σ(λ2 + σ)

λ2
− q2x2w

σ
.

(25)

Use these values to find x1, x2 from (10),

x1 = r2λ2σ

(w − σ)2(λ2 + σ) − σx
− λ2 + σ

σ
q2w,

x2 = r2λ2σ

(w − σ)2(λ2 + σ) − σx
− λ2 + σ

σ

w

q2
.

(26)

It is convenient to introduce the following notation:

u = (w − σ)2(λ2 + σ) − σx. (27)

Substitute (26) and (27) into the last relation (24),

2r2λ2σ 2(λ2 + σ)uwQ = σu3 + (λ2 + σ)[λ2w2 + σ 2(2w − σ)]u2 + r4λ4σ 4. (28)

Here

Q = 1

2

(
q2 +

1

q2

)
= w2

1 + w2
2

2w1w2
= cos(2 arg w1). (29)

In addition to (28), the relation between w,Q and u is defined by (11). This relation
written at the points (25), (26) takes the form

2r2λ4σ 2[(λ2 + σ)2u2 + r4λ4σ 2]uwQ = [(λ2 + σ)2(λ2w + σ 2)2 − 2p2λ4σ 2]u4

+ r4λ4σ 2[(λ2w + σ 2)2 + (λ2 − σ)2σ 2 − 4σ 4]u2 + r8λ8σ 6.

Eliminating Q by (28) we come to the following equation:

λ2(λ2 + σ)2u5 + (λ2 + σ)[2p2λ4 − (λ2 + σ)3σ ]σu4

+ r4λ6σ 2u3 + 2r4λ4σ 4(λ2 + σ)2u2 − r8λ8σ 6 = 0. (30)

Thus, for given σ the corresponding value of u is one of the real roots of equation (30), which
have constant coefficients as a polynomial in u. Hence u is a constant. After it is determined,
we obtain from (28)

Q(w) = σu3 + (λ2 + σ)[λ2w2 + σ 2(2w − σ)]u2 + r4λ4σ 4

2r2λ2σ 2(λ2 + σ)uw
(31)

with obvious constraint following from (29)

Q2(w) � 1. (32)

7
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Using algebraic radicals write

q(w) =
√

Q + i
√

1 − Q2, (33)

then all phase variables are expressed in terms of one real positive variable w:

w1 = q(w)
√

w, w2 = 1

q(w)

√
w, w3 = λ

σ
w,

x1 = r2λ2σ

u
− λ2 + σ

σ
q2(w)w,

x2 = r2λ2σ

u
− λ2 + σ

σ

1

q2(w)
w,

y1 = σ

(
1 +

σ

λ2
− r4λ2σ

u2

)
+

r2λ2

u
q2(w)w,

y2 = σ

(
1 +

σ

λ2
− r4λ2σ

u2

)
+

r2λ2

u

1

q2(w)
w,

z1 =
[
λ2 + σ

λ
q(w) − r2λσ

u

1

q(w)

] √
w,

z2 =
[
λ2 + σ

λ

1

q(w)
− r2λσ

u
q(w)

] √
w.

(34)

The whole system (23) at the values found reduces to one equation

λ2στ + (λ2 + σ)u = 0.

Given that σ �= 0, it is always solvable with respect to τ . Therefore all critical points of the
function LK with σ �= 0 are also critical points of the function LG with an appropriate value
of τ . Thus, the points defined by (31), (33), (34) together with the points belonging to the
pendulum trajectories (6) completely constitute the set {rank J = 1} ⊂ P 6.

To accomplish the description of special periodic motions let us derive the differential
equation for w(t). For this purpose, it is enough to consider the last equation in (9). Substituting
y1, y2 from (34), q(w) from (33) we obtain

(
dw

dt

)2

= r4λ2σ 2w2

u2
[1 − Q2(w)]. (35)

Using (31) after some obvious transformations we come to the following equation,

(
dw

dt

)2

= λ2

4σ 2
P+(w)P−(w), (36)

where

P±(w) = 2σ 2r2

u
w ± P(w),

P (w) = w2 +
2σ 2

λ2
w +

σ [u3 − (λ2 + σ)σ 2u2 + r4λ4σ 3]

(λ2 + σ)λ2u2
.

(37)

Since deg P+(w)P−(w) = 4, equation (36) is integrated in elliptic functions of time. The
roots of (37) are explicitly calculated. It makes equation (36) convenient to investigate the

8
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existence of solutions. Solve (8) and (34) with respect to the initial real phase variables,

α1 = r2λ2σ − (λ2 + σ)u

4r2λ2σ 3(λ2 + σ)u2

[
P(w) − 2r2σ 4

λ2u2
(r2λ2 + u)

]
,

α2 = − r2λ2σ − (λ2 + σ)u

4r2σ 3

√
P+(w)P−(w),

α3 = r2λ2σ − (λ2 + σ)u

2rλσu

√
uP+(w),

β1 = r2λ2σ + (λ2 + σ)u

4r2σ 3

√
P+(w)P−(w),

β2 = r2λ2σ + (λ2 + σ)u

4r2λ2σ 3(λ2 + σ)u2

[
P(w) − 2r2σ 4

λ2u2
(r2λ2 − u)

]
,

β3 = − r2λ2σ + (λ2 + σ)u

2rλσu

√
uP−(w),

ω1 = 1

2rσ

√
uP+(w),

ω2 = − 1

2rσ

√
uP−(w),

ω3 = λ

σ
w.

(38)

Together with (36) the obtained expressions give the complete description of all special periodic
motions of the Kowalevski gyrostat in two constant fields.

From (38) we easily find that the variable w > 0 in the corresponding solutions of (36)
must satisfy both inequalities uP+(w) � 0 and uP−(w) � 0. Since according to (37) for
positive w the values uP+(w), uP−(w) cannot be simultaneously negative, it is enough to
satisfy the inequality

P+(w)P−(w) � 0. (39)

Finally, we come to the following statement: for given σ ∈ R the special periodic motions
different from (6) exist if and only if there exist u ∈ R and w ∈ R, w > 0 satisfying (30)
and (39).

4. The values of the first integrals

To obtain the equations defining the nodes of the diagrams �h, we need to express the first
integrals (4) at the points of the above-found solutions. Substitution of (31), (33), (34) into
(12) gives the following values of the integral constants:

h∗ = − u

2(λ2 + σ)σ
− (λ2 + σ)λ2 + 2σ 2

2λ2
+

(λ2 + 2σ)r4λ2σ 2

2(λ2 + σ)u2
,

k∗ = − (λ2 + 2σ)u

(λ2 + σ)σ
+ (λ2 + 2σ)σ − r4λ4σ 3

(λ2 + σ)u2
,

g∗ = − (λ2 + σ)2u2 − r4λ4σ 2

8(λ2 + σ)2λ6σ 2u6
[λ4u6 + (λ2 − σ)(λ2 + σ)2λ2σu5 − (λ2 − 2σ)(λ2 + σ)4σ 3u4

− (λ2 + 3σ)r4λ6σ 3u3 − 4(λ2 + σ)2r4λ4σ 6u2 + (λ2 + 2σ)r8λ8σ 7].

(40)
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Figure 1. Example of the diagram �h.

Recall that the constant u is connected with σ by equation (30). The expressions provided by
(40) can be used to construct computer illustrations of bifurcation diagrams of the map J or its
restrictions to iso-energetic levels as the boundary conditions for the two-dimensional sheets or
curves respectively. Of course, this process must be preceded by the non-trivial investigation
of the existence conditions for the above solutions in terms of the arbitrary constant σ and the
physical parameters λ, a, b. Here is the brief scheme. Fix some parameters a, b satisfying (3).
Then the pointed out family of periodic solutions depends on two parameters λ and σ . Some
obvious degenerations take place if λ = 0; then we come to the problem of the top motion
in two constant fields and the corresponding set splits to the pendulum motions [5] and the
special periodic motions of the Bogoyavlensky case [15]. Also the singular cases are σ = 0
(the case dK = 0 studied above) and λ2 + σ = 0 (the above formulae have some singularities
needing extra investigation). More bifurcations of the family happen when the parameters
cross the values producing a multiple root of the polynomial P+(w)P−(w). It is easy to see
that, if λ and σ differ from the values already discussed, neither P+ nor P− have multiple
roots. Their common root may be only zero. Eliminating u between the equations P±(0) = 0
and (30) we obtain the separating set in the plane (λ, σ ); this set corresponds to the existence
of the gyrostat equilibria when w(t) ≡ 0. Furthermore it is necessary to investigate the cases
of existence of a multiple root of equation (30) in u; such a root must provide at least one
real solution of (36). Contemporary systems of symbolic computations give the possibility
of obtaining some conditions for the parameters and create an effective algorithm calculating
the nodes of bifurcation diagrams for any given energy value. The example of the bifurcation
diagram �h cut by the points (40) from the curves (16), (17) is shown in figure 1. Here
a = 1, b = 0.35, λ = 0.25, h = 0.8. We see that the values (7) can give an isolated point in
�h as in the case shown, or a point of self-intersection of the curves (16), (17) similar to the
case λ = 0 [5]. The values (g∗, k∗) found from (40) and the condition h∗ = h correspond to
transversal intersections of �1 and �2.
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We now prove directly that the points defined by (40) belong to both surfaces �1,�2.
For the surface �1 put

u = r2λ2σ

R
(R =

√
(λ2 + σ)2 + 2λ2s). (41)

Then equations (40) yield

h∗ = (λ2 + 2σ)s

λ2 + σ
+ σ − r2λ2

2(λ2 + σ)R
,

k∗ = − 2λ2σs

λ2 + σ
+ σ 2 − (λ2 + 2σ)r2λ2

(λ2 + σ)R
,

g∗ = s

2(λ2 + σ)2

{
r4λ4

2[2λ2s + (λ2 + σ)2]
+ 2[(λ2 + 2σ)s + (λ2 + σ)2]σs

− r2[(λ2 + 3σ)λ2s + 2(λ2 + σ)2σ ]

R

}
.

(42)

It is necessary to satisfy equation (30). Substitute the value of u into it by (41),

r2[λ2s + (λ2 + σ)2] − [2σs2 + p2(λ2 + σ)]R = 0. (43)

Eliminating R in (42) by (43), we obtain the values of h, k, g satisfying (16). Hence, any point
(40) belongs to �1.

For the surface �2 put

u = −2λ2σs, (44)

then from (40)

h∗ = 8λ4s3 − 4(λ2 + σ)[(λ2 + σ)λ2 + 2σ 2)]s2 + (λ2 + 2σ)r4

8(λ2 + σ)λ2s2
,

k∗ = 8(λ2 + 2σ)λ2s3 + 4(λ2 + σ)(λ2 + 2σ)σs2 − r4σ

4(λ2 + σ)s2
,

g∗ = −4(λ2 + σ)2s2 − r4

512(λ2 + σ)2λ6s6
[64λ8s6 − 32(λ2 − σ)(λ2 + σ)2λ4s5 − 16(λ2 − 2σ)(λ2 + σ)4σs4

+ 8(λ2 + 3σ)r4λ4s3 − 16(λ2 + σ)2r4σ 2s2 + (λ2 + 2σ)r8σ ].

(45)

Substitute h, k by h∗, k∗ in the first equation (17). It becomes the identity. Equation (30) with
(44) yields

32(λ2 + σ)2λ4s5 − 16(λ2 + σ)[2p2λ4 + (λ2 + σ)3σ ]s4

+ 8r4λ4s3 − 8(λ2 + σ)2r4σs2 + r8σ = 0. (46)

Using the values h∗, g∗ from (45) calculate the expression

4sg∗ + r4 − 2sp2(h∗ + λ2) + 4λ2s3. (47)

It turns out to be the left part of equation (46) multiplied by

8λ4s3 + 4(λ2 − 2σ)(λ2 + σ)2s2 + (λ2 + 2σ)r4

128(λ2 + σ)2λ6s5
.

Therefore, (47) is equal to zero and the second equation (17) holds.
Thus, the values of the first integrals at the pointed out family of periodic motions provide

the parametric equations of the transversal intersections of the bifurcation sheets corresponding
to real solutions in the problem of motion of the Kowalevski gyrostat in two constant fields.
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5. Conclusion

In this paper we have considered the case of motion about a fixed point of a gyrostat with the
inertia tensor of the Kowalevski type under the action of two independent constant force fields
described by the completely integrable irreducible Hamiltonian system with three degrees of
freedom [1]. No explicit integration of this system or its subsystems with non-zero gyrostatic
momentum and asymmetric combination of the forces is known yet. The main results can be
summarized as follows.

The equations of the surfaces bearing the bifurcation diagram of the integral map are
derived from the known Lax representation. To cut out the bifurcation diagram itself, one
needs to find all the cases when the rank of the integral map is less than 2. These cases
correspond either to the points of equilibria, which are easily calculated, or to the so-called
special periodic motions. Such motions are of great interest in the problem of topological
classification because they define the bifurcations inside the existing critical subsystems with
two degrees of freedom and generate the nodes of the bifurcation diagrams induced on iso-
energetic surfaces. The knowledge of the nodes is necessary to apply various methods of
finding topological invariants of the system. This problem is solved here by obtaining the
explicit formulae (6) and (38) for all special periodic motions of the Kowalevski gyrostat in
two constant fields. It follows from (6) and (36) that the phase variables are elliptic functions
of time. Equations (40) represent the values of the first integrals in terms of the physical
parameters of the gyrostat and the force fields and two additional parameters satisfying one
algebraic restriction. These values are also expressed in terms of the parameters on the smooth
sheets of the bifurcation diagram.

The obtained results allow us to complete in the nearest future the classification of
the bifurcation diagrams with respect to the physical parameters started in [17, 19] and
provide the necessary basis for the topological analysis of this highly complicated integrable
system.
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